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1 The basis set

The normal convention is for the X-axis to be parallel with the a axis of the
unit cell and for the Y-axis to be oriented in the ab plane. In the figure below
(Fig. 1), the X-axis is therefore pointing towards the viewer exactly parallel
with the a vector, shown as a . The Y-axis is pointing upwards and the Z-axis

Figure 1: The real and reciprocal lattice vectors as viewed from the direction
of the unit cell vector a which is pointing towards the viewer and is coincident
with the Cartesian X-axis. The Y-axis points vertically upwards in the plane
of the page behind b and the Z-axis is coincident with c*.

is pointing horizontally to the left. In the completely general case of a triclinic
crystal where a, b and c are not orthogonal, the b and c vectors will pointing
out of the plane of the page. Normally, the triclinic unit cell is chosen with
the unit cell angles acute, although it is allowed for all of them to be obtuse.
The latter would mean that b and c would be pointing away from the viewer,
which is a bit of a pain to draw, so we will assume that α, β and γ are acute,
which allows all the unit cell vectors to point towards the viewer. The positive



direction of the rectangular Cartesian Y-axis will be behind the b vector (as
drawn) and lie in the plane of the page and the Z-axis will be parallel with
c* as drawn. For orthorhombic, tetragonal or cubic unit cells, b and b* will
coincide exactly in the plane of the page, as will c and c*. The a and a*
axes which are pointing towards the viewer will also coincide for these crystal
systems. However, in the general triclinic case, they do not, and are therefore
drawn separately. The a* axis is shown pointing towards the viewer in the
lower-right hand direction. Note that a* is orthogonal to b and c and likewise
for the other combinations i.e. b* is orthogonal to a and c, and c* is orthogo-
nal to a and b. Accordingly, a is orthogonal to b* and c*, b is orthogonal to
a* and c*, and c is orthogonal to a* and b*. All the axes are drawn in the
usual right-handed convention. If any of this is not making sense, the reader
must go back to a fundamental crystallography text book.

Looking down the a vector we see that the angle between b* and c* is,
of course, α*. This is the actual angle between the b* and and c* vectors in
the plane of the page. If we look at the angles on the plane of the page and
remember that c* is at right-angles to the plane defined by vectors a and b
and that b* is at right-angles to the plane defined by vectors a and c, with a
bit of basic trigonometry we can show that the angle between the plane formed
by vectors a and b and the plane formed by vectors a and c is 180◦-α*. This
is the angle between these two planes measured in the plane of the page. It
is important to note that this is not the same as the angle between the b and
c vectors in three dimensions (which is α) since these vectors are projecting
out of the page. However, looking exactly along the a vector they appear to
be separated by an angle of 180◦-α*. We can imagine looking at the earth
from above the north pole and if the vectors b and c point from the centre
of the earth towards two cities, then 180◦-α* would be the difference in their
longitudes.

So if we consider the tip of the vector a as being the north pole, vectors b
and c differ in longitude by 180◦-α*. Likewise, if we consider the tip of the b
vector to be the north pole, vectors a and c would differ in longitude by 180◦-β*
and with c as the polar axis, vectors a and b would differ in longitude by 180◦-
γ*. Exactly the same arguments apply to the reciprocal lattice vectors, e.g. if
the tip of the vector a* is taken as the north pole, vectors b* and c* differ in
longitude by 180◦-α. This is all quite tedious to write, but can be summarised
by the following diagram (Fig. 2) showing the relationships between the real
and reciprocal unit cell angles as spherical triangles.

This allows us to use spherical trigonometry to work out the reciprocal cell
angles (α*, β* and γ*) from the real unit cell angles (α, β and γ) and vice
versa.
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Figure 2: (a) The unit cell vectors a, b and c diverge from the origin (not
shown) by angles α, β and γ in the manner shown. (b) The reciprocal lattice
vectors a*, b* and c* diverge by the angles α*, β* and γ*. The curves indicate
portions of great circles, i.e. circles which have their centres at the centre of
a sphere on which they are drawn. This might sound obvious, but lines of
constant latitude are (with the exception of the equator) not great circles since
their centres align with the polar axis of the globe rather than the centre of
the earth. Indeed, latitude lines other than the equator are called small circles.
In contrast, all lines of constant longitude are great circles. Hence, we can see
from (a) that if a is regarded as the polar axis, the longitudes of b and c differ
by 180◦-α*. Likewise, from (b) we can see that if we treat a* as the polar axis,
the longitudes of b* and c* differ by 180◦-α.

2 Fundamental spherical trigonometry

With reference to Fig. 3 the following equations are true for all spherical tri-
angles formed by the intersection of great circles. A great circle can be drawn
between any two points on the surface of a sphere and represents the shortest
possible distance between those points.

Spherical sine rule:

sin(A)

sin(a)
=

sin(B)

sin(b)
=

sin(C)

sin(c)
(1)

Spherical cosine rule:

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(A) (2)
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Figure 3: A general spherical triangle with sides a, b and c which are arcs
formed by great circles. Note that a, b and c are actually the angles subtended
by each arc at the centre of the sphere. A given arc defines a plane and the
angles between these planes are shown in capital letters as A, B and C.

By comparison of Fig. 3 with Fig. 2(a) can use the sine rule to show the
following:

sin(180◦ − α∗)

sin(α)
=

sin(180◦ − β∗)

sin(β)
=

sin(180◦ − γ∗)

sin(γ)
(3)

or
sin(α∗)

sin(α)
=

sin(β∗)

sin(β)
=

sin(γ∗)

sin(γ)
(4)

Likewise the cosine rule gives us other relationships such as:

cos(α) = cos(β) cos(γ) + sin(β) sin(γ) cos(180◦ − α∗) (5)

or
cos(α) = cos(β) cos(γ)− sin(β) sin(γ) cos(α∗) (6)

This is more useful than the sine rule since we can rearrange it as follows:

cos(α∗) =
cos(β) cos(γ)− cos(α)

sin(β) sin(γ)
(7)

This allows us to determine α* unambiguously from the real unit cell angles
since it must be in the range 0 - 180◦. Of course, equivalent expressions can be
derived for β* and γ*.

3 Application to unit cell vectors

We have seen how the relative directions of the unit cell vectors can be con-
veniently described by spherical trigonometry but our aim is to describe their
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orientation with respect to an orthonormal system of axes. In the below figure
(Fig. 4) we show how this is done.

Figure 4: In (a) a system of orthonormal axes with its origin at the earth’s
centre is shown. Our view is from above the Atlantic with X as the polar axis
(pointing to the lower right) while Y and Z are equatorial. The dashed lines on
the globe indicate 90◦ arcs of great circles, i.e. they subtend 90◦ angles at the
centre of the earth and thus enclose 1/8 of the sphere, or an octant. These arcs
lie in planes which are at 90◦ to one another, indicated as right angle symbols
at the corners of the triangle. Hence, the sum of the angles for this triangle
is 270◦, which is perfectly fine on the surface of a sphere! The right-hand side
(b) shows the convention for aligning crystallographic unit cell vectors with
orthonormal axes. The grey dashed lines indicate 90◦ arcs, as for the octant in
(a). Unit cell vector a is aligned with the X-axis while b lies within the XY
plane. Since these are both right-handed axial systems, the vector c points in
a roughly similar direction to Z, but is oriented more towards the viewer in this
case. Note that we chose a triclinic cell in which all the unit cell angles α, β
and γ are acute (the corresponding great circles are labelled). This means that
b and c emerge within the same octant as shown.

From Fig. 4(b) we can see that the situation with the a and b axes is
relatively straightforward since a is parallel to X (i.e. it is at 90◦ to both Y
and Z) and b is γ from a, 90◦-γ from Y and 90◦ from Z. It is also clear that
c is at an angle of β from X, however the angular distances of c from Y and
Z are harder to determine and require use of the cosine rule. The appropriate
triangulation is shown in Fig. 5.

The unknown angular distances that we require are shown as δ and ε in Fig.
5 and specify the angles that separate c from Y and Z, respectively. Considering
the spherical triangle formed by X, Y and c, we can use the cosine rule to show:
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Figure 5: Spherical triangulation to determine inter-axial angles. Here Fig.4(b)
has been redrawn showing more detail. The angles β and γ are known, and
α* can be calculated from equation 7. The two angles, δ and ε, which give the
orientation of the c axis with respect to the orthonormal Y- and Z-axes, are
given by equations (9) and (11). The vector a is parallel to X (i.e. is at 90◦ to
both Y and Z) and b is γ from a, 90◦-γ from Y and 90◦ from Z.

cos(δ) = cos(β) cos(90◦) + sin(β) sin(90◦) cos(180◦ − α∗) (8)

which can be simplified by basic trigonometry to:

cos(δ)=-sin(β)cos(α*) (9)

Similarly, with the lowest spherical triangle shown in Fig. 5, which is formed
by X, Z and c, we can show:

cos(ε) = cos(β) cos(90◦) + sin(β) sin(90◦) cos(α∗
− 90◦) (10)

Since cos(-θ)=cos(θ), cos(α*-90◦)=cos(90◦-α*) and since cos(90◦-θ)=sin(θ),
cos(90◦-α*)=sin(α* ). Therefore equation (10) becomes:
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cos(ε)=sin(β)sin(α*) (11)

The highlighted equations (9) and (11) are the crux of what comes next!

4 Converting from fractional to orthogonal co-
ordinates and vice versa

If an atom is located at a fractional coordinate of x along the a axis, its co-
ordinate on the X-axis would be ax. Since a is at right-angles to the Y- and
Z-axes, the Y and Z values are independent of x.

If the atom has a fractional coordinate on the b axis of y, this has compo-
nents on the X- and Y-axes but not Z since b is at right angles to this axis. The
component of yb on the Y-axis is dictated by the angle between b and this axis.
Reference to Fig. 5 shows that this component is given by simple trigonometry
as ybcos(90◦-γ) or ybsin(γ). Since b is not orthogonal to the X-axis, then yb
has a component on this axis of ybcos(γ). Again, since b is orthogonal to Z,
yb has no component on this axis.

The situation with c is that zc has components on all three orthonormal
axes (X, Y and Z) which are, of course, dictated by their angular distance from
c. Reference to Fig. 5 shows that these angles are β, δ and ε, respectively.
The component of zc on X is therefore zccos(β) and the components on Y and
Z are zccos(δ) and zccos(ε), respectively. Using equations (9) and (11) we can
see that:

zc cos(δ) = −zc sin(β) cos(α∗) (12)

and
zc cos(ε) = zc sin(β) sin(α∗) (13)

Summing these components on each of the orthonormal axes, we see that:

X = xa+ yb cos(γ) + zc cos(β) (14)

Y = yb sin(γ)− zc sin(β) cos(α∗) (15)

Z = zc sin(β) sin(α∗) (16)

This has an elegant upper-triangular matrix representation as follows:





X

Y

Z



 =





a b cos(γ) c cos(β)
0 b sin(γ) −c sin(β) cos(α∗)
0 0 c sin(β) sin(α∗)









x

y

z



 (17)
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Hence, in order to orthogonalise a set of fractional coordinates, we need to
calculate the terms in the 3x3 matrix. Since α, β and γ are known, the only
unknowns are the cos and sin of α* which can be calculated from equation (7)
and from the relationship:

sin(θ) =
√

1− cos2(θ) (18)

Given that the angle will be less than 180◦ by convention, sin(θ) should be
positive.

We can also obtain the fractional coordinates from the Cartesian ones by
inversion of the 3x3 matrix above.





x

y

z



 =





a b cos(γ) c cos(β)
0 b sin(γ) −c sin(β) cos(α∗)
0 0 c sin(β) sin(α∗)





−1



X

Y

Z



 (19)

This can be done by a maths library so will not be expanded further.

5 Closing remarks and references

There are other ways to orthogonalise fractional coordinates, e.g. to align c
with the Z-axis and to have b coplanar with Y and Z. The spherical trigonom-
etry of this system is derived at the start of Chapter 3 of Computing Meth-

ods in Crystallography (Ed. J. S. Rollett), Pergamon Press, Ox-
ford (1965) pp. 22-3 and this derivation has simply been adapted here for
the current convention of aligning a with X. An alternative derivation using
dot products of i, j and k vectors, which avoids spherical trigonometry alto-
gether, is given by other authors, including J. W. Jeffery in Methods in

X-ray Crystallography, Academic Press, London (1971) pp. 333-4.
Some derivations involve calculating the unit cell volume (e.g. this one at
ruppweb.org).

There are other potential complications e.g. with monoclinic systems, some
workers preferred to align b with Z so that the only non-90◦ angle (or unique
angle), β, is shown in plotted map-sections. This involves a cyclic permutation
of the orthonormal axes, giving Z, X, Y which are aligned with c, a and b,
respectively, i.e. Y becomes the slowest-changing axis. This helps with calcu-
lating the map by fast Fourier transform, however, since β is not fixed at 90◦,
there is a choice of whether to orient a exactly with X or c with Z.

For completeness, the CCP4 program PDBSET (P. Evans, MRC LMB,
Cambridge, September 1992) lists the following possible combinations:
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NCODE X Y Z
1 a c* × a c*
2 b a*× b a*
3 c b*× c b*
4 a+b c*× (a+ b) c*
5 a* c× a* c
6 a b* a× b*
7 a* b a*× b

NCODE 1 is the orthogonalisation convention we have described in detail
here (i.e. the Protein Data Bank (www.rcsb.org) or PDB system), 3 is occas-
sionally used for monoclinic cells since it aligns b with Z (and c with X), 5 is
the system mentioned above due to Rollett (1965) and 7 is that used by the
program TNT (Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. (1987).
Acta Crystallogr. A, 43, 489-501).

Note that plane normals are indicated by vector cross-products in this table
and, again, if that doesn’t make sense, then a fundamental textbook must be
referred to.

While chemical X-ray structures are usually stored as fractional coordinates
(in Crystallographic Information Files or CIF’s for short), the larger scale of
biological macromolecules means that it would not make efficient use of com-
puter memory to store them in this manner. Consequently they are stored as
orthogonal Å coordinates and regenerating the fractional coordinates therefore
requires knowledge of the orthogonalisation convention. The NCODE 1 scheme
(row with highlighted text in the table) is the standard adopted for both PDB
and macromolecular CIF (mmCIF) formats.

A succinct proof of the spherical law of cosines, i.e. equation (2), is given
by F. C. Phillips in An Introduction to Crystallography, 4th edition,
Oliver & Boyd, Edinburgh (1971) p. 196 and it is moderately useful since
all the other laws can be derived from this one.

I am very grateful to Dr Ian Tickle (Global Phasing Ltd, Cambridge, UK)
for commenting on this manuscript.

Please send any further comments, corrections and suggestions to the au-
thor so I can correct any errors or omissions (e-mail: jbcooper@fastmail.net).

- Written with Gummi - the simple LATEX editor -
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